Free electron laser ablation of articular and fibro-cartilage at 2.79, 2.9, 6.1, and 6.45 microm: mass removal studies.

نویسندگان

  • Jong-In Youn
  • George M Peavy
  • Vasan Venugopalan
چکیده

BACKGROUND AND OBJECTIVE The wavelength and tissue-composition dependence of cartilage ablation was examined using selected mid-infrared laser wavelengths. STUDY DESIGN/MATERIALS AND METHODS The mass removal produced by pulsed laser ablation of articular and fibro-cartilage (meniscus) were measured. The wavelengths examined were 2.79, 2.9, 6.1, and 6.45 microm and provided by a free electron laser (FEL) emitting 4 microsecond macropulses consisting of 1-2 picoseconds duration micropulses delivered at 350 picosecond intervals. The measurement of tissue mass removal was conducted using a microbalance during laser ablation. RESULTS These studies demonstrated that for articular cartilage the highest mass removal was achieved at lambda = 6.1 microm followed by, in order, lambda = 2.79, 2.9, and 6.45 microm. In comparison, the maximum mass removal for fibro-cartilage was achieved using lambda = 6.1 microm radiation with no statistically significant differences in mass removal provided by the other wavelengths. In evaluation of the comparative influence of each wavelength on tissue type, there was no difference in ablation efficiency between articular and fibro-cartilage at lambda = 6.1 microm. However, the ablation efficiency of articular cartilage was higher than that of fibro-cartilage at both lambda = 2.79 and 2.9 microm. By contrast, lambda = 6.45 microm radiation ablated fibro-cartilage more efficiently than articular cartilage at radiant exposures greater than 12 J/cm2. CONCLUSIONS The mass removal of articular and fibro-cartilage produced by FEL ablation at selected mid-IR wavelengths was measured as a function of incident radiant exposure. The ablation efficiency was found to depend on both wavelength and tissue type. The 6.1 microm wavelength was found to provide the highest ablation efficiency for both articular and fibro-cartilage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm.

BACKGROUND AND OBJECTIVE Previous investigations have reported evidence of wavelength dependence on cortical bone ablation. This study used mid-infrared laser wavelengths generated by a free electron laser (FEL) and mass removal measurements to further examine the ablation efficiency of a wavelength (2.79 microm) not previously reported and three wavelengths (2.9, 6.1, and 6.45 microm) previous...

متن کامل

Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea.

We ablated porcine corneas with a free electron laser tuned to either 2.77 or 6.45 microm, two matched wavelengths that predominantly target water and protein, respectively. The ejected nonvolatile debris and the crater left behind were examined by circular dichroism, Raman spectroscopy, and scanning electron microscopy to characterize the postablation conformation of collagen proteins. We foun...

متن کامل

Wavelength-dependent collagen fragmentation during mid-IR laser ablation.

Mid-infrared free-electron lasers have proven adept in surgical applications. When tuned to wavelengths between 6 and 7 microm, such lasers remove defined volumes of soft tissue with very little collateral damage. Previous attempts to explain the wavelength-dependence of collateral damage have invoked a wavelength-dependent loss of protein structural integrity. However, the molecular nature of ...

متن کامل

Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery.

Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuriesin the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential useof laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ = 2.94 μm), titanium:sapphire femtose...

متن کامل

Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laser.

We have theoretically investigated the role of thermal diffusion and chemical kinetics as a possible dynamic explanation for the preferential ablative properties of infrared radiation from a free-electron laser (FEL). The model is based on a laminar system composed of alternating layers of protein and saline. We have compared exposure to 3 microm where water is the main absorber and 6.45 microm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lasers in surgery and medicine

دوره 36 3  شماره 

صفحات  -

تاریخ انتشار 2005